Superhydrophobic porous networks for enhanced droplet shedding
نویسندگان
چکیده
Recent research has shown that the use of submillimeter-scale tapered post arrays could generate the so-called pancake bouncing, which is characterized by the fast shedding of impinging drops from the surface in a pancake shape without undergoing the retraction stage as observed on conventional superhydrophobic surfaces. Despite this exciting discovery, the fabrication of this unique superhydrophobic surface with tapered post arrays involves complex processes, hindering its wide applications in practical sectors. Here, we report on the facile strategy to prepare a new hierarchical multilayered superhydrophobic surface directly from commercially available porous matrix that allows for efficient drop shedding. Further study shows that the enhanced drop mobility observed on such a surface is attributed to the synergistic cooperation of hierarchical structures endowing an adequate energy storage and effective energy release. The facile fabrication of superhydrophobic surface with enhanced drop mobility may find many practical applications including anti-icing, dropwise condensation and self-cleaning.
منابع مشابه
Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the v...
متن کاملEffect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures....
متن کاملElectrical actuation-induced droplet transport on smooth and superhydrophobic surfaces
Electrical control of liquid droplet motion and wettability has wide-ranging applications in the field of MEMS, lab-on-a-chip devices and surface engineering, in view of the resulting enhanced flow control opportunities, low power consumption and the absence of mechanical moving parts. This article summarizes recent progress towards understanding of the fundamentals underlying electrical actuat...
متن کاملFacile preparation of hierarchically porous polymer microspheres for superhydrophobic coating.
A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonso...
متن کاملHow Porous Nanofibers Have Enhanced the Engineering of Advanced Materials: A Review
Nanofibers are one-dimensional nanomaterialswith a superfine diameter and many potential applicationsdue to their desirable characteristics such as small diameter,high surface area, high flexibility, high porosity, and specialmechanical properties. In the recent years, porous nanofibershave been the subject of considerable research works in awide range of app...
متن کامل